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Using a model based on the internal force balance of a white dwarf, and solved using the Runge-Kutta method,
the central densities of three observed white dwarfs, Sirius B, 40 Eri B and Stein 2051 were calculated to be
(4.5 ± 1.17) × 1010kgm−3, (2.59 ± 0.59) × 109kgm−3 and (3.86 ± 3.77) × 109kgm−3. Sirius B is suspected
to be a white dwarf of carbon composition while 40 Eri B and Stein 2051 are likely to be composed of iron.
An estimate of the Chandrasekhar limit was found to be ≈ 1.44M�, which is in agreement with pre-existing
literature, and an upper mass limit for a theoretical white dwarf composed of 100% iron-56 was found to be
≈ 1.24M�.
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I. INTRODUCTION

A white dwarf is the end product of stars with ini-
tial masses from about 0.07 to 8 M� which comprises
around 97% of the stars in our galaxy.1 It therefore rep-
resents the most common evolutionary endpoint of most
stars including our sun. Of cosmological importance, the
long timescales involved in a fusion-less white dwarf pro-
vide a map of the past evolutionary track for the star
and the surrounding environment,2 potentially providing
valuable information on stellar and galactic evolution.3

Composed mostly of electron-degenerate matter, white
dwarfs resist collapsing into denser stellar objects such as
neutron stars or black holes by the balance of electron de-
generacy pressure and gravity,4,5 this balance is key in
the determination of white dwarf properties such as mass,
radius, central density and elemental composition of the
star. Such calculations are often analytically challeng-
ing and so computational numerical methods provide a
robust and efficient tool to tackle such problems.

II. BACKGROUND PHYSICS

A. Hydrostatic equilibrium and force balance

A star may be modelled as a spherically symmetric,
non rotating mass of gas. The force balance between the
gravitational force attempting to collapse the star and
the gas pressure opposing it can be described using the
equation of hydrostatic equilibrium.

dP

dr
= −Gm(r)

r2
ρ(r) (1)

Which relates the Pressure P , radius r, mass m(r), and
density ρ(r). Which, by using the chain rule, may be
rewritten as

dP

dr
=
dρ

dr

dP

dρ
(2)
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The dP
dρ term in eq (2) is only dependent on the materi-

als of which the star is composed, and thus constitutes
an equation of state. In most main sequence stars the
gas pressure may be modelled as thermal pressure using
the ideal gas law, however for objects subject to greater
forces like white dwarfs, the composing matter will be-
have as degenerate fermions, and so a reasonable approx-
imation to this equation of state can be modelled using
the relativistic free Fermi gas.6

dP

dρ
= Ye

mec
2

mp
γ

(
ρ(r)

ρ0

)
(3)

ρ0 is in units of kg m−3 and provides natural unit for
density given by

ρ0 =
mpm

3
ec

3

3π2~3Ye
=

9.79× 108

Ye
(4)

where Ye is the number of electrons per nucleon, c the
speed of light, me andmp the electron and proton masses.

The γ function is given by

γ(y) =
y2/3

3(1 + y2/3)1/2
(5)

combining equations (1) and (3) we reach a differential
equation given by

dρ

dr
= −

(
dP

dρ

)−1
Gm(r)

r2
ρ(r) (6)

Using connected rates of change of the above equation
with the relationship between the the mass and radius
of a thin spherical shell (7), we can use what is known
as the Runge-Kutta method to solve numerically for the
density and mass and radius of the star.

dm

dr
= 4πr2ρ(r) (7)

III. COMPUTATIONAL DETAILS

A. Nondimensionalisation of mass and density functions

Due to the large quantities involved in astronomical
systems, if equations (6) and (7) are to be solved nu-
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merically they must first be scaled appropriately. The
variables present in the equations are r, ρ(r) and m(r)
and so we aim to recast these in a manner that is di-
mensionless. Therefore each variable must scaled using
a constant (characteristic unit) that is of the same di-
mensions. We will denote the new dimensionless variable
with a dash and the characteristic unit with a nought.

ρ(r)→ ρ′(r) =
ρ(r)

ρ0

m(r)→ m′(r) =
m(r)

M0

r → r′ =
r

R0

(8)

For the density constant, ρ0 we equate it to the defini-
tion from equation (4). The choice of the constant may
be any combination of variables or number that is dimen-
sionally correct, however it is sensible to use units that
are characteristic to the system in question. Similarly we
may also chose characteristic units for M0 and R0 that
are given by

M0 =
4

3
πρ0R

3
0 (9)

R0 =

(
3Yemec

2

4πGmpρ0

)1/2

(10)

replacing the variables in equations (6) and (7) with
those from (8) using the steps found in appendices VII A
and VII B we obtain two new dimensionless relations:

dρ′

dr′
= −m

′(r′)ρ′(r′)

r′2
(11)

and

dm′

dr′
= 3r′2ρ′(r′) (12)

B. Runge-Kutta algorithm

Equations (11) and (12) can be numerically integrated
via the use of the the fourth order Runge-Kutta method,
the literature on which is quite expansive7 and so most
details will be spared in this paper. The key points
to note however is that the iterative integration process
takes place via a step size of h and is run n times.

Since we have nondimensionalised the equations we are
solving so that they are unitary, the step size can be set
to h = 1/n meaning that we can continually change the
number of iterations until we reach a desirable accuracy,
this type of approach is what is known as an adaptive
Runge-Kutta Method. An important note is that more
iterations will increase computational time and yet does
not imply higher accuracy8 as reducing h will result in

more steps to reach the same endpoint, therefore it may
be useful to use a small step size where the solution is
rapidly changing and vice versa, however this will lead
to the unequal tabulation of data, and so at cost of ac-
curacy, a constant small step was chosen for the specific
integration in question.

1. Calculation of uncertainty

The Runge-Kutta algorithm iterates from a value x1
to the next value x2, giving a value of y1 with an asso-
ciated uncertainty δ. The value of δ may be quantised
by reducing the step size h by a factor, say 1/2, giving a
new, slightly changed, value of y1 we denote by y′1 thus
we can calculate

δ =
y′1 − y1
y1

(13)

Thus by changing the step size we can control the un-
certainty to a point that is desirable, for our case we
chose this uncertainty to be < 0.0001% Thus all values
for density, mass and radius are quoted to below this
mathematical uncertainty unless otherwise stated.

IV. RESULTS AND DISCUSSIONS

A. Internal structure of white dwarf stars

Using the methods in III we solved for the internal
structure of theoretical white dwarfs. The first calcula-
tion was for the comparison two white dwarfs composed
of 100% carbon-12(Ye = 0.5) and iron-56 (Ye = 26/56) =
0.464.

The star was integrated with initial boundary condi-
tions of r = 0, and central density ρ(0) = ρ0, to final
boundary condition of ρ(r) = 0. Plotting the two stars
with mass against radius we obtained FIG. 1.

TABLE I. Tabulated results for carbon and iron based white
dwarfs with two different central densities.

Type Central Density Mass (M�) Radius (R�)
Carbon ρ0 0.504 0.0139

Iron ρ0 0.434 0.0129
Carbon 105ρ0 1.422 0.00155

Iron 105ρ0 1.226 0.00144

From FIG. 1. it can be seen that the carbon white
dwarf reaches a larger mass and radius than an iron star
of equal central density.

Performing the same calculation, taking the upper
limit of the central density by setting it to 105ρ0, we
obtain FIG. 2, we observe the mass for the carbon white
dwarf to be asymptotic to around ≈ 1.42M� and the iron
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FIG. 1. Comparison of carbon and iron based white dwarfs
internal mass radius relationship with central density ρ0.
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FIG. 2. Comparison of carbon and iron based white dwarfs
internal mass radius relationship with central density 105ρ0.

star to ≈ 1.23M�. Increasing the density to higher val-
ues further reduces the radius however this upper limit of
the mass does not increase significantly, as seen in FIG.
3.

This upper limit for the mass of white white dwarf is
what is known as the Chandrasekhar limit, of which the
currently accepted value is around ≈ 1.44M�,9 although
this may not be set in stone as a paper published in
2013 by Das and Mukhopadhyay10 suggest an upper limit
of ≈ 2.58M� based on observed super-luminous white
dwarfs. The accepted result however is a result of the
relativistic nature of the free Fermi gas present in white
dwarfs. If a white dwarf were to exceed this mass, by
having it’s central density go to infinity, the matter would
no longer behave as fermions and would likely collapse
into other extreme stellar objects such as neutron stars
or black holes. It is interesting to note that a iron white
dwarf seems to have an upper limit of ≈ 1.24M�, this
is an unusual observation as stars that would be of this
nature would likely undergo a core collapse supernova11
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FIG. 3. Graph showing central density agaist mass, the two
maximum masses for the carbon and iron dwarfs are labelled.

We may also plot the internal density relation for the
two stars in the same way as we have done with their
mass, these plots are found and discussed in appendices
VII C.

B. Mass-radius dependence on central density

Plots were made to analyse the effects of central den-
sity on mass and radius. This was done by simulating
N number of stars with different central densities and
plotting their mass against radius. On the graph was
also plotted the mass and radius of three known white
dwarfs12 shown in table II.

TABLE II. Mass, radius, and calculated theoretical central
density (TCD) of three known white dwarfs.

Name Mass (M�) Radius (R�) TCD (ρ0)
Sirius B 1.053 ± 0.028 0.0074 ± 0.0006 23.0 ± 6.0

40 Eri B 0.48 ± 0.02 0.0124 ± 0.0005 1.23 ± 0.28

Stein 2051 0.50 ± 0.05 0.0115 ± 0.0012 1.83 ± 1.79

400 stars of carbon and iron were simulated with cen-
tral densities spread in a logarithmic fashion between
(0.01ρ0 to 106)ρ0, these are shown on FIG. 4 of which
a zoomed plot is shown on FIG. 5, also shown are the 3
known stars from table II with associated error bars. We
note that Sirius A coincides with a carbon white dwarf
with central density ≈ (23.0±6.0)ρ0. 40 Eri B and Stein
2051 correspond to iron based white dwarfs with central
densities of≈ (1.23±0.28)ρ0 and≈ (1.83±1.79)ρ0 respec-
tively. Which, in SI units, gives (4.5±1.17)×1010kgm−3,
(2.59± 0.59)× 109kgm−3 and (3.86± 3.77)× 109kgm−3.
The errors of these values were calculated by taking the
upper and lower limits of radius and thus corresponding
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FIG. 4. Mass-radius relation for 400 stars with central densi-
ties between 0.1ρ0 and 106ρ0.
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FIG. 5. Zoomed version of FIG. 4.

upper and lower limit of central density.

V. CONCLUSION

Using a model of the force balance between the rela-
tivistic free Fermi gas and the equation of hydrostatic
equilibrium, we have obtained estimates for the cen-
tral density and compositions of two iron based white
dwarfs, 40 Eri B and Stein 2051 with central densities
≈ (1.23 ± 0.28)ρ0 and ≈ (1.83 ± 1.79)ρ0 and for the
carbon based white dwarf Sirius B with central density
≈ (23.0 ± 6.0)ρ0. We have also determined the Chan-
drasekhar limit for an iron white dwarf to be ≈ 1.44M�
and that for a theoretical upper limit to a iron based
white dwarf of ≈ 1.24M�. Possible extensions involve
using models that do not have singular elemental com-
positions, which may allow for some deviations from the
theoretical curve that may explain the slight deviations
that 40 Eri B and Stein 2051 display. The model we
have used also does not have any temperature depen-

dence which could play a roll in the calculation of de-
generacy pressure. Mathematically, the solving of the
Lane Emden equation of state may also provide another
method to probe the internal structure of white dwarfs.13
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VII. APPENDICES

A. Derivation for density-radius nondimensionalisation

Expanding eq. 6 we have

dρ

dr
= − Gmp

Yemec2
1

γ (ρ(r)/ρ0)

m(r)ρ(r)

r2
(14)

Replacing

m(r) = M0m
′(r′)

ρ(r) = ρ0ρ
′(r′)

r = R0r
′

(15)

Where

M0 =
4

3
πρ0R

3
0 (16)

ρ0 =
mpm

3
ec

3

3π2~3Ye
(17)

and by using the relation

dρ

dr
=
dr′

dr

dρ

dr′
=
dr′

dr

(
dρ

dρ′
dρ′

dr′

)
=

1

R0

(
ρ0
dρ′

dr′

)
(18)

We obtain

ρ0
R0

dρ′

dr′
= − Gmp

Yemec2
1

γ (ρ′(r′))

M0m
′(r′)ρ0ρ

′(r′)

(R0r′)2
(19)

Simplifying

dρ′

dr′
= − GmpM0

Yemec2R0

m′(r′)ρ′(r′)

γ (ρ′(r′)) r′2
(20)

By substituting the definition of M0 in, we find

dρ′

dr′
= − Gmp

Yemec2
4πR2

0ρ0
3

m′(r′)ρ′(r′)

γ (ρ′(r′)) r′2
(21)

We wish to normalize the above equation so that all the
constants not dependent on r are unitary.

Gmp

Yemec2
4πR2

0ρ0
3

= 1

∴ R0 =

(
3Yemec

2

4πGmpρ0

)1/2 (22)

The dimensions of R0 are in meters.[
[kg][m2 · s−2]

[m3 · kg−1 · s−2][kg][kg ·m−3]

]1/2
= [m2]1/2 = [m]

(23)
Thus, our final nondimensionalised equation for the den-
sity radius relation is

dρ′

dr′
= −m

′(r′)ρ′(r′)

r′2
(24)

B. Derivation for mass-radius nondimensionalisation

Starting with

dm

dr
= 4πr2ρ(r) (25)

Replacing

m(r) = M0m
′(r′)

ρ(r) = ρ0ρ
′(r′)

r = R0r
′

(26)

and by using the relation

dm

dr
=
dr′

dr

dm

dr′
=
dr′

dr

(
dm

dm′
dm′

dr′

)
=

1

R0

(
M0

dm′

dr′

)
(27)

we obtain

M0

R0

dm′

dr′
= 4π(R0r

′)2ρ0ρ
′(r′) (28)

Simplifying

dm′

dr′
=

4πR3
0ρ0

M0
r′2ρ′(r′) (29)

Inserting the value of M0 = 4πR3
0ρ0/3 in the above equa-

tion we obtain the final nondimensionalised relation

dm′

dr′
= 3r′2ρ′(r′) (30)

C. Density-radius plots for internal structure
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FIG. 6. Comparison of carbon and iron based white dwarfs
internal density radius relationship with central density ρ0

We see from figures 6 and 7 that the average density for
the iron white dwarf is less than that of the carbon star,
and a higher central density results in steeper density fall
off.
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