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Using simulated annealing, the global minima of N identical charges on a conductive disc was simulated up
to N=29. Computational methods are discussed for accuracy and efficiency, solutions obtained agree with
those obtained by Erko and Oymak1 as well as Worley2.
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I. INTRODUCTION

Given N identical charges placed on a finite conductive
surface they will diffuse in a manner as to minimise the
potential energy of the system. Solutions to such optimi-
sation problems were notably considered by J. J. Thom-
son when describing the plum pudding model3 and more
recently, for the study of manipulation of small semicon-
ductor particles known as quantum dots which have po-
tential applications in transistors, quantum computing4

and medical imaging5. The configurations to the ground
state minima are not necessarily trivial and various ap-
proaches since have been explored since the initial propo-
sition put forward by Berezin in 19856.

II. COMPUTATIONAL DETAILS

A. Simulated Annealing

N identical charges were randomly generated within
a radius r = 10 disc and allowed to diffuse through in-
cremental motion. The total energy of the system was
calculated through the sum of the non-dimensional equa-
tion for the electrostatic potential energies of each of the
charges.
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where rij is the distance between charge i and j and the
factor of a half accounts for double counting. For calcu-
lations, a random moment was generated, ones that low-
ered the total energy were always accepted, while those
that caused the total energy to increase were accepted
with a probability proportional to

P ∝ exp(−∆W/T ) (2)

This process was repeated for a fixed value of tempera-
ture with the amount of runs proportional to the number
of charges, this ensured that each charge had roughly an
equal amount of moves irrespective of the total number
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FIG. 1. The process of simulated annealing for N = 3, red
points are new lowest found minimum energies.

of charges (∼ 400 moves per charge). Initially, the incre-
ment of movement, dl, and the number of moves for each
charge must be sufficiently large to allow the particles
to be able to move across the entire solution space and
thus a value of dl = 0.4 was chosen as 400 × 0.4 = 160
allowed a single charge to have the ability to move about
the entire diameter of the disc.

At high temperatures, all possible motions are permit-
ted except those that place the charges outside the disc,
and configurations with notably low total energies were
saved. After a set amount of movement iterations, the
system was cooled and dl decreased by ∼ 4%, causing
less configurations that raised the energy to be accepted
and allowing the simulation to ‘home in’ on minima, an
example of this process is depicted FIG. 1 .

B. Circumventing Local Minima

The choice of annealing, rather than other methods
such as hill a climb algorithm, was chosen for solving for
the minimum potentials as for higher N configurations
(N > 11); which are discussed later, have the charac-
teristic of having multiple solutions with similar energies
but with discrete configurations as seen in FIG. 2. Tra-
ditional hill climb algorithms are strongly dependent on
the initial conditions of the system and have no method
to distinguish local minima from global minima.

Some solutions to getting trapped in these local min-
ima include, reverting back to a previously found higher
energy configuration if no new lower energies are found
after a certain amount of runs, this can be computation-
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FIG. 2. Two configurations for N=25 with total energies
WTot = 32.20816 and WTot = 32.15070 respectively. The
configuration with three charges inside is a metastable local
minima, while the other with five is the global minima.

ally intensive however it significantly lowers the proba-
bility of getting trapped in these suboptimal potential
wells. Randomly regenerating the charges positions to
see if they tend to a lower configuration or having a prob-
ability of a charges randomly moving by large increments
in random directions in an attempt to get out of these
holes.

There is no sure way to know if a given solution is the
global maximum without trying every possible combina-
tion, however we can assess to a degree of certainty using
the above method, coupled with some sensible intuition
to determine whether or not a given solution is correct.7

C. Program Optimisation

Each additional charge increases the computational
time, therefore optimising the task of calculating the to-
tal energy is of special interest. One method is storing the
total energy as a sum of energies each of the individual
particles, and storing the energies of the individual par-
ticles as partial sums of the inter-particle energies. This
means that when calculating a positional change of one
particle, the corresponding new 1

rij
value can be replaced

in each of the partial sums and the total energy can be
recalculated by summing the list. This is in contrast with
recalculating the total energy explicitly at every step.

A possible method to reduce the total amount of iter-
ations required would be to manually generate the initial
positions based upon theorised underlying geometry, this
however bares the problem of excluding the possibility of
states existing that do not fit the hypothesised model as
possibly found by Worley for N=185.2

Cerkaski and Nazmitdinov8 approached the same prob-
lem by using a theoretical semi-analytical approach by
means of analysing the actual coulomb interactions be-
tween the particles themselves, thereby removing the ran-
dom and probabilistic parts from the computational anal-
ysis and speeding up the process dramatically, they claim
remarkably accurate configurations upto N = 400.

III. RESULTS AND DISCUSSIONS

A. Results for N = 2 to 29

Simulations up to N=29 were conducted, all plots are
found in VI appendices, and the following observations
were made for the minimum energy ground states are
shown in TABLE I.

TABLE I. Results for 2 ≤ N ≤ 29.

N Outer Shell Inner Shell Energy (W )
2 2 0 0.050004 ± 0.000001
3 3 0 0.173232 ± 0.000018
4 4 0 0.382930 ± 0.000084
5 5 0 0.688452 ± 0.000031
6 6 0 1.097088 ± 0.000044
7 7 0 1.614198 ± 0.000123
8 8 0 2.245100 ± 0.000444
9 9 0 2.994453 ± 0.000250
10 10 0 3.864899 ± 0.000291
11 11 0 4.861904 ± 0.000390
12 11 1 5.960433 ± 0.000574
13 12 1 7.185563 ± 0.000749
14 13 1 8.541193 ± 0.000718
15 14 1 10.02891 ± 0.000479
16 15 1 11.65662 ± 0.003831
17 15 2 13.41861 ± 0.008185
18 16 2 15.33275 ± 0.027040
19 16 3 17.34612 ± 0.018671
20 17 3 19.41057 ± 0.043897
21 18 3 21.67380 ± 0.034671
22 18 4 24.13014 ± 0.012186
23 19 4 26.67799 ± 0.068790
24 20 4 29.32740 ± 0.017570
25 20 5 32.15070 ± 0.017150
26 21 5 34.95413 ± 0.041319
27 22 5 38.04146 ± 0.028454
28 22 6 41.18431 ± 0.042809
29 23 6 44.50067 ± 0.018105

The uncertainty in the energy (W ) was calculated via
the standard deviation (σ) and standard error (SEW )
with the use of three repeats (n) for each value of N.
The full list with all values is found in VI Appendices.
However due to the nature of the process, the calculated
errors are incredibly small and can be neglected in most
cases, they are presented here for completeness.

For values N = 1 to N = 11, the charges concentrated
in an equidistant fashion around the circumference of the
disc as in FIG. 3. N = 12 was the first configuration that
did not fit the pattern of having the charges distribute
around the circumference of the disc, instead the 12th
charge was positioned at the center of the disc, as seen in
FIG. 4. Berezin6 proposes that possible solutions for this
could be explained using catastrophe theory, and funda-
mentally arises from the fact that there cannot be a fully
symmetrical placing of charges around the disc except for
N = 1, 2, 3, 4, 6, 8,12 and 20, therefore other number
of charges cause a finite degree of structural instability
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resulting in non trivial configurations.

The single central charge configuration continues upto
N = 16, then for N = 17 an additional charge is added
at the centre, this continues to occur as shown in TABLE
I upto N = 29 where 6 charges form a ring in the center
FIG. 5.

FIG. 3. Configuration for N=10.

FIG. 4. Configuration for N=12.

FIG. 5. Configuration for N=29. The asymmetry is due to
limited computational time for the simulated annealling pro-
cess.

B. Comparison to Theoretical Models

Erko and Oymak1 propose a theoretically derived re-
lationship between the total energy and the number of
charges in the system given by

W (N) =
π

4
N2 − 1.5599728N

3
2 + 0.9509338N (3)

The above equation is for a disc of unit radius, and so
to compare this to our r = 10 disc we must multiply our
values of energy by a factor of 10.

0 5 10 15 20 25 30
N

0

100

200

300

400

W
FIG. 6. Graph showing 10W plotted against N , the solid line
is eq. 3.

Plotting the energies in table I multiplied by 10 against
eq. 3 we obtain FIG. 6, we expect to find the simulated
energies calculated by eq. 1 to coincide with this formula
exactly as stated by Erko, and indeed, they do.

IV. CONCLUSION

Through on the process of simulated annealing, we
have obtained conjectural estimates for the global min-
ima configurations for the first 29 systems of N charges
on a conductive disc. These are in agreement with pre-
existing literature

Further extensions to higher values of N are possi-
ble but would require exponentially larger computational
power, and so more efficient alogorithms than basic sim-
ulated annealling could prove more useful. Extensions to
three dimensions have been studied in great detail and re-
mains a problem of interest to mathematical researchers,
as well as professionals working in the firlds of viral mor-
phology, crystallography, molecular structure and quan-
tum computing9.
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VI. APPENDICES

The following equations were used to calculate the
standard deviation and standard error given in TABLE
II.

σ =

√∑(
W −W

)2
(n− 1)

(4)

SEW =
σ√
n

(5)

TABLE II. Results for 2 ≤ N ≤ 29.

N W1 W2 W3 W σ SE
2 0.050008 0.050007 0.050004 0.050006 0.000002 0.000001
3 0.173232 0.173274 0.173293 0.173267 0.000031 0.000018
4 0.38293 0.38301 0.383214 0.383051 0.000146 0.000084
5 0.688555 0.688452 0.688524 0.68851 0.000053 0.000031
6 1.09712 1.097232 1.097088 1.097147 0.000076 0.000044
7 1.614546 1.614582 1.614198 1.614442 0.000212 0.000123
8 2.245657 2.2451 2.246621 2.245793 0.000769 0.000444
9 2.994864 2.99532 2.994453 2.994879 0.000433 0.00025
10 3.865333 3.865904 3.864899 3.865378 0.000504 0.000291
11 4.861904 4.863185 4.862169 4.862419 0.000676 0.00039
12 5.960541 5.962206 5.960433 5.96106 0.000994 0.000574
13 7.185869 7.187947 7.185563 7.18646 0.001297 0.000749
14 8.543614 8.542896 8.541193 8.542568 0.001244 0.000718
15 10.03044 10.02891 10.02912 10.02949 0.000829 0.000479
16 11.65662 11.66894 11.65849 11.66135 0.006635 0.003831
17 13.41861 13.43918 13.4458 13.43453 0.014177 0.008185
18 15.3464 15.41983 15.33275 15.36632 0.046835 0.02704
19 17.4103 17.34612 17.37132 17.37591 0.032339 0.018671
20 19.55182 19.41057 19.43243 19.46494 0.076032 0.043897
21 21.67379 21.74277 21.79343 21.73666 0.060052 0.034671
22 24.13014 24.16038 24.17077 24.15377 0.021106 0.012186
23 26.71513 26.67799 26.90041 26.76451 0.119147 0.06879
24 29.32747 29.38015 29.3274 29.34501 0.030431 0.01757
25 32.1507 32.2084 32.19179 32.18363 0.029704 0.01715
26 34.95413 35.041 35.09608 35.03041 0.071567 0.041319
27 38.04146 38.14001 38.09231 38.09126 0.049284 0.028454
28 41.33209 41.2689 41.18431 41.26177 0.074147 0.042809
29 44.50067 44.56285 44.52462 44.52938 0.031359 0.018105
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