
A Study of Accretion Discs Using Computational Methods

A Study of Accretion Discs Using Computational Methods
Norman Khana)

(Dated: 19 April 2018)

In this report we present a numerical implementation of a fluctuating accretion disc model in order to produce
synthetic light curves, their associated power spectrum density (PSD) plots, as well as recreate the linear rms-
flux relationship as observed in some astrophysical systems. Beginning with a brief theoretical background
we provide a foundational basis for accretion disc theory as well as observational motivations for their study.
We describe our model then investigate changing its model parameters on our output graphs. We conclude
by proposing some extensions to our toy model.

Keywords: Accretion Disc, Alpha-Prescription

1. INTRODUCTION

1.1. Theoretical Background

Accretion discs are gravitationally bound structures
composed of gas, dust, or other matter in orbit around
a central mass. Ubiquitous in astrophysics, these discs
are known to naturally arise surrounding a variety of ob-
jects such as black holes, white dwarfs and protostars.
The formation of accretion discs may be described via
the use of some initially simple physics, however accre-
tion disc theory quickly leads to more complicated results
incorporating fluid dynamics, plasma physics and many
phenomenological estimates and guesses known only to
specialists.1 Nevertheless, simplifications and assump-
tions can be made, which lead to some tangible results.
The study of accretion discs has wider physical implica-
tions, allowing us to help test more complex questions
about black hole physics, understanding the growth of
structure in the universe, or even meaningfully constrain
our knowledge of the fundamental properties of space and
time.2

1.1.1. Angular Momentum

A particle with angular momentum in orbit around a
central gravitating body will remain in orbit. Thus in or-
der to move to a smaller radius, the particle in question
must lose some of its angular momentum,3 this may only
occur if there is an external torque acting on the particle,
which is absent in a closed system. However if we now
consider a bulk collection of particles in orbit around a
central mass forming a disc, we may allow some particles
to have more or less of the angular momentum than oth-
ers. This redistribution of angular momentum between
the particles allows for the radial transport of angular
momentum outwards in the disc, a key focus in accretion
disc theory. Following the calculations as shown by J.E.
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Fig. 5.1. A ring of matter of mass m placed in a Kepler orbit at R = R0 spreads out under

the action of viscous torques. The surface density Σ, given by equation (5.10), is shown as a

function of x = R/R0 and the dimensionless time variable τ = 12νtR
−2
0 , with ν the constant

kinematic viscosity.

vR ∼ ν/R; (5.12)

therefore (5.11) may be re-expressed as

tvisc ∼ R/vR; (5.13)

tvisc is known as the viscous or radial drift timescale, since in the form (5.13) it gives
an estimate of the timescale for a disc annulus to move a radial distance R.

From the diffusion equation (5.8) we see that if in some region of the disc Σ has
spatial gradients characterized by a lengthscale l �= R in general, tvisc will be given by
∼ l2/ν. In particular, density enhancements involving sharp spatial gradients (small
l) diffuse more quickly than smoother density distributions.

From (5.9) and (5.10), with ν = constant, we get

vR = −3ν
∂

∂R
ln(R1/2Σ)

= − 3ν

R0

∂

∂x
ln(x1/2Σ)

FIG. 1. Shows the viscous evolution of a ring of matter of
mass m at radius R = R0 in terms of dimensionless time τ
position x and surface density Σ. One can see how the initial
ring spreads, bringing the majority of the mass closer in while
a small amount of the mass moves further out carrying with
it the most of the angular momentum.5

Pringle4 it can be shown that an initially thin ring of ro-
tating gas around a central object will evolve as to spread
the disc out, with a small amount of mass at large radius
containing the bulk of the initial angular momentum as
shown in FIG. 1.

This derivation relies on a parameter known as viscos-
ity, which is the tool that converts gravitational potential
energy into radiation in an efficient manner, it is an im-
portant feature in accretion disc theory and distinct from
ordinary molecular viscosity. The exact process by which
the angular momentum is redistributed has been of de-
bate for some time. It is however suspected that a com-
bination of several processes such as collisions between
particles within the orbiting gas and possibly magnetoro-
tational instability (MRI) are the likely perpetrators of
angular momentum transport. As particles collide, shock
heating, followed by radiative cooling acts to reduce the
energy of the particles in the collision allowing for the
redistribution of angular momentum within the system,
similarly MRI is a fluid instability that causes chaotic
changes in pressure and flow velocity within the disc.6

The process of angular momentum transport is not
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unique to accretion discs as it is not dissimilar to the pro-
cess that occurs in other spiral structure such as galaxies7

1.1.2. Thermalisation and Emission

The process by which an accretion disc reaches thermal
equilibrium is of particular interest as it is the process
that gives rise to radiation and allows for any observation
of the disc. The first and most straightforward process
that a disc can produce electromagnetic radiation is sim-
ply that the disc exists in thermal equilibrium and thus
produces black-body radiation based on its temperature,
in fact, this assumption proves to be incredibly power-
ful and and can lead to results that accurately reflect
observation.8 We will talk about this in section 2.1.2.
Other processes that can lead to radiation emission are
Compton and inverse Compton scattering as well as emis-
sion absorption by hydrogen and helium inside the gas.9

1.2. Accretion Disc Theory

The study of accretion discs has been a major area of
research over the past ∼ 40 years, and with with over
9000 papers published in the field last year, it remains
active and topical. Currently, much of what we know
in the field was developed in a burst of activity in the
early 1970s in a series of important seminal papers.10 One
of these papers of special interest was one produced by
Shakura and Sunyaev in 197311 who proposed an semi-
analytical model for an accretion disc where an inflow of
matter Ṁ at the outer regions of the disc was responsible
for much of the observed spectrum. Some of the key
results of the paper are that the effective temperature of
a steady disc varied radially as T (R) ∝ T−3/4 as well as
a parameter for the transport of angular momentum via
the use of a dimensionless quantity known as “viscosity”
denoted by α.12

1.2.1. The Viscosity Parameter α

The α parameter was initially proposed in terms of the
kinematic viscosity ν, in a relation given by EQ. 1, and
was also defined to be constant throughout the disc.

ν = αcsH (1)

Where cs is the sound speed, H the height of the disc,
and α is a free parameter that can take values between
0, corresponding to no accretion and approximately 1,
and thus is essentially a measure of the efficiency of the
angular momentum transport within the disc.13

From the standard Shukura-Sunayeav model of accre-
tion discs we may define several key relations. The first
of these is known as the viscous, or radial drift velocity,
Vvisc(r). Given by EQ. 2, it is a measure of the speed

of a particular process to propagate at a given radius r
from the center of the disc.

Vvisc(r) =
1

2π

(
H

R

)2

r−0.5α (2)

From the viscous velocity, we may define the viscous
timescale, tvisc(r) EQ. 3, which is the amount of time
required for a process to propagate from a given radius r
to the centre of the disc.

tvisc(r) =
r

Vvisc(r)
=

1

2π

(
H

R

)2

r1.5α (3)

The viscous frequency fvisc(r) may be defined as the
reciprocal of the viscous timescale and thus is given by
EQ. 4

fvisc(r) =
1

tvisc(r)
=

2π

α

(
H

R

)−2

r−1.5 (4)

It is also useful for understanding to briefly mention
both the dynamical timescale tdyn ∼ 1/Ω where Ω is the
orbital angular velocity, as well as the thermal timescale
tth ∼ c2s/νΩ2. The dynamical timescale is an estimate
of the smallest amount of time a physical process may
take within the disc. The analogously for the thermal
and viscous timescales. These three timescales may be
generally be related by EQ. 5

tdyn � tth � tvisc (5)

1.2.2. Fluctuating Accretion Disc Model

Initially Shakura-Sunyaev proposed that the dimen-
sionless viscocity parameter α was a constant, however
many models14 have now been put forward that imply
that possibly alpha could vary with radius in the disc
making alpha now a function of radius α(r). Of paticu-
lar note is Lyubarskii in 199715, who proposed a variation
of the standard thin disc model whereby the viscosity
parameter α was not constant throughout the disc, but
instead fluctuated independently at different radii. The
reasoning behind this was that X-ray sources were ob-
served to have random stochastic variations in their flux,
and PSDs that displayed what is known as flicker noise,
also referred to as 1/f noise or pink noise. It was found
that the spectra could be explained via α fluctuations
that occurred on the order of the local viscous timescale.
A numerical implementation of this fluctuating accretion
disc model with several extensions16 is what we will be
modelling in our project.
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1.3. Observational Motivations

So far, the furthest discs we have been able to resolve
discs that are around a distance of 3000pc,17 this means
that most of the observational evidence for the existence
of discs around AGN or black holes often comes in the
form of a total flux measurement (photometry) as well as
measurements of spectral features (spectroscopy). These
manifest themselves as observed light curves which is
a fundamental instrument of observational study in the
field.

1.3.1. Light Curves

Light curves are constructed via the observation of to-
tal flux in a certain energy band over a given period of
time. By probing different parts of the energy band over
different timescales we are able to build a rough picture
of the processes involved in an accretion disc, a key ob-
servation is that that variations in higher energy domains
(X-ray) tend to have faster variability than those at lower
energy bands. This may imply that the processes that
are responsible for x-ray production occur at much faster
speeds and by consequence at much smaller radii.402 P. Arévalo et al.

energy distribution of Ark 564. They found a bolometric luminosity
of ∼1045 erg s−1, which, for a BH of ∼107 M� implies an accretion
rate close to the Eddington limit.

Pounds et al. (2001) and Papadakis et al. (2002) have studied
the X-ray flux variability of Ark 564 using two-year long, Rossi
X-ray Timing Explorer (RXTE) monitoring data and the one-month
long ASCA light curves. Pounds et al. (2001) detected a break in
the PSD at a frequency ∼8.7 × 10−7 Hz, which was later revised
by Markowitz et al. (2003), obtaining a value of 1.6 × 10−6 Hz.
On the other hand, Papadakis et al. (2002) detected a second break
at ∼2 × 10−3 Hz, which corresponds to a time-scale of ∼500 s,
almost 2000 times smaller than the long time-scale detected by
Pounds et al. (2001). Although the overall shape of the Ark 564
X-ray PSD is similar to that seen in Cyg X-1 in its low/hard state, the
large difference between the two frequency breaks strongly argues
against this possibility.

In this paper, we use a new XMM–Newton observation of Ark 564
combined with the month-long observation performed by ASCA, to
study the time lag and coherence functions between light curves of
various energy bands and use our results to investigate the X-ray
state in which Ark 564 might operate. An energy spectral analysis
of the XMM–Newton observations will be presented by Papadakis
et al. (submitted to A&A) while results from a PSD analysis, us-
ing archival, long RXTE and ASCA light curves, together with the
new XMM–Newton data, will be presented by McHardy et al. (in
preparation).

The paper is organized as follows. We briefly describe the data
reduction in Section 2 and calculate the spectral-timing properties of
the light curves in Section 3. In Section 4, we investigate the energy
dependence of the time lags. We compare the lag spectra with other
AGN and with BHXRB lag spectra in Section 5 and summarize our
conclusions in Section 6.

2 T H E DATA

The 100 ks long, continuous exposure provided by XMM–Newton
and the month-long, but periodically interrupted, observation from
ASCA produce data sets that probe complementary time-scale
ranges. In the present study we combine both data sets to cover
the widest possible range.

2.1 XMM–Newton

Ark 564 was observed by XMM–Newton for 100 ks on 2005
January 5 and 6, during revolution 930. We used data from the
European Photon Imaging Cameras (EPIC) PN and MOS instru-
ments. The PN camera was operated in Small Window mode, using
the medium filter, for a total exposure length of 98.8 ks. Source
photons were extracted from a ∼2 × 2-arcmin2 region and the
background was selected from a source-free region of equal area
on the same chip. We selected single and double events, with qual-
ity flag = 0. The source average count rate in the 0.2–10 keV band
is ∼28 counts s−1. The data showed no indication of pile-up when
tested with the XMM-SAS task epatplot. The background average
count rate was ∼0.17 counts s−1, and stayed practically constant
throughout the exposure.

Both MOS cameras were operated in the Prime Partial Window 2
imaging mode, using the medium filter, for a total exposure length
of 99.1 ks. Source photons were extracted from a circular region of
∼46 arcsec in radius. We have selected single, double, triple and
quadruple events. In the case of the MOS data, significant photon
pile-up was evident so the central 12 arcsec at the core of the point
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Figure 1. XMM–Newton combined PN and MOS, 0.2–10 keV light curve,
binned at 96 s.

spread function were discarded from our analysis. The remaining
count rates in the 0.2–10 keV band are 5.6 and 5.5 counts s−1 for
MOS1 and MOS2, respectively.

To construct the light curves, we combined the data from the three
EPIC detectors and selected energy ranges to match the average en-
ergies of the ASCA light curves. The 0.7–2, 2–5, 5–10 and 2–10 keV
ASCA energy bands have the same mean energy as the 0.9–2, 2–4.5,
5–8 and 2–5.7 keV energy bands of the PN camera, respectively.
We used these PN energy bands for all EPIC detectors, as the PN
counts dominate over those of both MOS cameras. The combined
0.2–10 keV light curve, binned to 96-s resolution, is shown in Fig. 1.

2.2 ASCA

We used data taken by ASCA during its long observation of Ark 564,
between 2000 June 1 and July 5. The data were reduced as detailed in
Papadakis et al. (2002) and we constructed light curves in the 0.7–2
(soft), 2–5 (medium) and 5–10 keV (hard) energy bands for all four
detectors, SIS0, SIS1, GIS2 and GIS3. As these data contain regular
gaps, due to the Earth occultation of the satellite, we binned the data
in orbit-long bins (∼5400 s) to obtain an evenly sampled light curve,
containing 551 points. To check the stability of the detector through
this month-long observation, we compared the ratios between the
light curves from different detectors. While SIS0, GIS2 and GIS3
showed consistent light curves, we observed discrepancies between
these and SIS1 in all energy bands. The ratio between the SIS1 light
curve and the light curves from all other detectors shows a linearly
decreasing trend, of amplitude ∼10 per cent as measured from the
start to the end of the observation. We therefore combined only SIS0,
GIS2 and GIS3 data, in each energy band, to produce the final light
curves.

The combined, binned and background-subtracted 0.7–10 keV
light curve is shown in Fig. 2. The average count rates for the soft,
medium and hard light curves are 2.7, 0.82 and 0.24 counts s−1,
respectively, and the average exposure fraction is 23 per cent. The
PSD and other variability properties of this data set have been studied
by, for example, Edelson et al. (2002) and Papadakis et al. (2002).

3 B ROA D - BA N D C O H E R E N C E A N D L AG S

Fluxes in different energy bands may vary in a similar way and can
do it simultaneously, or with a delay. This relative behaviour can
be studied by cross-correlating two light curves, observed simulta-
neously in different energy bands. The cross-correlation measures
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FIG. 2. An example of an actual observed light curve from
the Narrow-Line Seyfert 1 Galaxy Ark 564 AGN.18

1.3.2. Power Spectrum Density

From a light curve, we may build what is known as
a power spectral density (PSD or sometimes PDS), this
is a method of analysis that provides information on the
frequencies present within a time series. PSDs are incred-
ibly useful as they can provide clues on various properties
of the disc such as the nature of variability production
and structure of a given accretion disc such as the posi-
tion of inner and outer radii.

A PSD often displays a characteristic form and may be
decomposed into some sort of function of frequency used
to describe it. Often times this comes in the form of

1/f noise which represents a power spectrum with equal
variability power per decade in frequency, while other
times more complicated decompositions are required as
shown in FIG. 3Accretion flows in XRB 47

Fig. 27 The right panel shows a PDS from the hard state of GS 339-4, together with its decomposition
into three Lorentzian components peaking in ν P(ν) at νb , νh , and νl , respectively. The left panel shows
a PDS from the neutron star 4U 0614+091, showing the same components (with two Lorentzians around
νh ), but with a higher frequency component, νu , consistent with there being additional noise power from
turbulence at the surface at the shortest timescales

have very complex harmonic structure. At the highest frequencies there is sometimes
a weak component peaking at νu , forming a small bump in the dimmest hard state, but
this is soon lost in the noise as the source spectrum softens.

Neutron stars in the island state have long been known to show very similar power
spectra to black holes in the hard state (e.g. Yoshida et al. 1993). In the newer language
of Lorentzians as described above then there are clear similarities to the BHB, with
these systems showing the same sorts of Lorentzian components (see the right panel
Fig. 27), which show the same correlations between frequencies as for the black holes
(Psaltis, Belloni and van der Klis 1999; Wijnands and van der Klis 1999; Belloni et al.
2002; van der Klis 2004). However, there are also clear differences. Their smaller mass
gives faster timescales, but even allowing for this there is more high frequency power
in the neutron stars than in the black holes (Sunyaev and Revnivtsev 2000). Figure 27
shows power spectra from a neutron star and a black hole (which are matched in
νb, scaled by the mass difference). It is clear that the major difference is simply
in normalization of the highest frequency component νu . This can be explained as
turbulence at the boundary layer giving additional high frequency noise to excite
whatever resonance produces the component at νu (Sunyaev and Revnivtsev 2000).

9.2 Evolution of the PDS during BHB transitions

The evolution of the power spectrum in Cyg X-1 is shown in the panels of Fig. 28
(after Axelsson et al. 2005), with these individual Lorentzians superposed. It is clear
that these components are linked together, so that their frequencies all increase as the
spectrum softens from the dimmest to the brightest hard state through to the soft state
(see e.g. van der Klis 2004). The most obvious correlations are that the LF QPO (or νh

if the QPO is not seen as a clear component) and low frequency break in the continuum

123

FIG. 3. Two PSDs from the hard state of GS 339-4 (left)
and the neutron star 4U 0614+091 (right). One can see the
associated decomposed Lorentzian components located at νb,
νh, νl, as well as the additional Lorentzian νu present in the
neutron star from additional noise power turbulence from the
surface at the shortest timescales.2

1.3.3. RMS-Flux Relationship

The rms-flux relation relates the absolute root-mean-
square (rms) variability of the light curve to its mean flux.
It was observed that systems where accretion-induced
variability is present that this relation often presents it-
self as linear.19 It is a very good test to see if a given
system has aperiodic variability on both short and long
timescales that are coupled multiplicatively. The pres-
ence of a linear rms-flux relationship rules out shot-noise
models, in which the different time-scales within the vari-
ability are combined additively.20

The rms-flux relation can potentially lead to the infer-
ence of constraints of certain parameters of the disc such
as the value of the viscosity parameter α or the disc to
height ratio H/R.21

To calculate the rms-flux relation, one must take a time
series and divide it up into a discrete number of bins, and
then by plotting the mean and rms of each bin against
each other. These bins need not necessarily be equal in
size, and in fact are often varied depending on the nature
of the timescale of the variabiility.22

1.3.4. Outbursts, Hard/Soft States

X-ray binary systems (XRB) appear to display
variability in their light curves over a large range of
timescales. On the longest of these timescales, on the
order of weeks to months, the PSD spectra of the system
may resemble a hard power law and such is called
the hard state. While on the shortest of timescales,
the spectra may change dramatically as to resemble a
quasi-thermal accretion disc in what is known as the soft
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state.23 The transition from the hard to soft and back
is refereed to as an “outburst” and can potentially be
explained by the fluctuating disc model described briefly
in section 1.3.5.

FIG. 4. Bottom: Schematic demonstrating the path traced on
a hardness intensity diagram (HID) for a typical (idealised)
black hole binary outburst. The source passes through three
broadly defined states, the hard (blue), intermediate (green)
and soft (red) states. Top: Power spectra representative of
these three states, with the hard and soft states on the right
and left respectively. From A. R. Ingram 201623

1.3.5. Truncated Disc

The truncated disc model is an accretion disc model
that is commonly used to explain spectro-temporal
variability on both long and short time scales.In the
truncated disk model, the inner areas of the disc are
occupied by a hot gas that is thick in height (H/R > 1),
and thus radiately inefficient, while the outer areas
are occupied by a cooler geometrically thin gas that is
radiately efficient.24

The structure of this report is organised as follows: In
Section 2 we discuss our numerical model, mechanism
of emission and main model parameters. In Section 3
we present our results of our model and discuss their
significance. Section 4 contains our conclusions, possible
extensions and closing remarks.

2. COMPUTATIONAL METHOD

2.1. Model Details

We have aimed to recreate the model put forward by
P. Arevalo and P. Uttley,25 which is a numerical imple-
mentation of the fluctuating accretion disc model.

Our disc model relies on a geometrically spaced (con-
stant ratio) number of discrete annuli N , with an inner
and outer radius rmin and rmax, the constant ratio be-
tween the annuli, c is given by EQ. 6

c =

(
rmax
rmin

)1/N−1

(6)

The choice of geometrically spaced annuli is in order to
obtain what is known as equal power per radial decade
which means that our resulting PSD will display the char-
acteristic 1/f shape observed in some systems.2

Our disc is also assumed to have a height to radius
ratio H/R as a variable parameter, as done by Arevalo
and Uttley this value was normalised to 1 for simplicity.
This means that our model is not actually one for a thin
disc (H/R� 1), but instead lies in a sort of middle-zone
between several different types disc models. The reason
for this is that it is more computationally demanding
to simulate thick discs than than thin (see FIG. 5) and
thus explains why most numerical work in the last four
decades have been on thick discs.1
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FIG. 5. Graph showing the relationship between the disc to
height ratio H/R and the viscous timescale for several dif-
ferent values of α. We can see for small values of H/R and
α the viscous timescale quickly becomes exponentially large
and thus computationally unfeasable using normal methods.
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FIG. 6. Input Lorentzians with a quality factor of Q = 0.5,
for the Timmer and Koenig method shown here for N = 10
annuli.

2.1.1. Timmer and Koenig Method

Each annulus is then assumed to have an indepen-
dently fluctuating rate of mass accretion which we denote
ṁ(r, t) the generation of this time series is done via a pro-
cess described by Timmer and Koenig26 which allows for
the generation of signal noise time series via the use of a
power law spectrum. In other words we can create a time
series with a desired PSD. For our model we used power
law spectrum P (ω) that is was a Lorentzian shaped dis-
tribution cantered on the local viscous frequency of the
particular annulus EQ. 7.

P (ω) =
γ2

ω − ω2
visc + γ2

(7)

where ωvisc = 2πfvisc and γ = fvisc

2Q where Q is known as

the quality factor which is the ratio of Lorentzian peak
frequency to full width half maximum FHWM, and was
varied between 0.5 and 10. A larger Q will create a
broader Lorentzian at the same frequency.

Each small independent local mass accretion ṁ(r, t)
are also normalized so that they have a mean of 0, and
a final fractional variability Fvar. This small indepen-
dent local mass accretion is essentially what accounts for
the small α fluctuations described in section 1.2.2. Next
we must introduce the propagation of these mass accre-
tions through the disc, this is done via an iterative multi-
plicative process that propagates from the outermost to
innermost radius as shown in EQ. 8

Ṁ(r, t) = Ṁ0

rmin∏
rmax

1 + ṁ(r, t) (8)

Ṁ0 is an initial arbitrary mass accretion rate at the out-
ermost annulus that is then propagated inwards at every
annulus and modulated by each of the radii further in
by the factor of 1 + ṁ(r, t). In order to have the correct

value in time, each Ṁ(r, t) must be shifted forwards in
time by its local viscous timescale. This is to ensure that
the propagation is actually causally connected in time
and that the propagation did not actually occur instan-
taneously.

2.1.2. Emission Mechanism

To generate the light curve from our disc, we must de-
fine an emissivity profile which was done in two ways, the
first is by applying physical concepts such as Plancks law
in conjunction with the Stefan-Boltzmann law to obtain
a spectral radiance as a function of radius of our disc.
The second method involves simply assuming an emis-
sivity profile loosely based on observation. In our model
we will investigate both of these methods.

From EQ. 5.43 Accretion power in astrophysics5 it can
be shown that the dissipation rate D(R) per unit area is
given by EQ. 9

D(R) =
3GMṀ

8πr3

[
1−

(rmin
r

)1/2]
(9)

Where G is the gravitational constant, M the mass of the
central object, Ṁ the mass accretion rate, σ the Stefan-
Boltzmann constant. This equation is one of the most
commonly used equations in accretion disc theory and is
essentially the flux of the disc.

Using the Stefan Boltzmann law D = σT 4, we obtain
an equation for the effective temperature EQ. 10

T (R) =

(
3GMṀ

8πr3σ

[
1−

(rmin
r

)1/2])1/4

(10)

From this we can see if we omit the inner bracket (R �
R∗) that the effective temperature goes as T ∝ r−3/4 as
dictated by the Shukura-Sunayeav model.

From this effective temperature as a function of radius
we may apply Plancks law as a function of frequency (EQ.
11 which provides the spectral radiance or also known as
the specific intensity which provides the full radiometric
description of a classical electromagnetic wave.

ε(r) = Iν = Bν [T (r)] =
2hν3

c2(ehν/kT (r) − 1)
(11)

The units for spectral radiance are given by erg · s−1 ·
cm−2 ·Hz−1 · sr−1, and thus to obtain a resultant light
curve we must specify a frequency ν and multiply the
spectral radiance at every annulus by the particular an-
nulis area which is given by EQ. 12

A = π
(
R2
i+1 −R2

i

)
(12)
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An alternative method for generating the spectrum of
the disc was also used, as done by Arevalo and Uttley,
one can simply assume an emissivity profile for the disc
given by EQ. 13 then assuming that the emitted flux is
simply proportional to the local mass accretion rate.

ε(r) = r−γ
(

1−
√
rmin
r

)
(13)

In this equation γ is a variable parameter that is in most
cases γ = 3 as to follow the total energy loss. However
certain energy bands may actually have radially depen-
dent energy loss and thus γ is allowed to be variable for
model robustness. This method provides similar results
to the one derived from physical reasoning, however is
computationally less intensive.

A plot of the emissivity vs radius for each method is
shown in FIG. 7

2.1.3. Main Model variables

TABLE I. Tabulated are the main model variables, their as-
sociated symbols and typical values.

Name Symbol Typical Values
Number of annuli N ≈ 100025

Minimum radius rmin ≈ 1.23 − 6Rg

Maximum radius rmax ≈ 105Rg

Quality factor Q 0.5 − 10

Disc Height Ratio H/R
< 1 for thin discs
> 1 for thick discs

Viscosity Parameter α 0.1 − 0.413

Simulation time tmax N viscous timescales

The source code for our model may be found at
https://github.com/nx1/ModellingAccretionDisks
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FIG. 7. The left figure shows the emissivity vs radius for the method in EQ. 11 with 3 different arbitrary frequencies ν shown.
While the right shows the emissivity profiles from EQ. 13 for two values of γ. One can see that in both cases, the emissivity
is stronger at radii further in, thus meaning the bulk of the emitted spectrum comes from the inner regions of the disc, this is
especially true at higher frequencies.

https://github.com/nx1/ModellingAccretionDisks
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3. RESULTS & DISCUSSION

Using the model described in section 2 we present several graphs and investigate the effect of changing model
parameters on them. Units of length are given in gravitational radii Rg = GM/c2. Units of time in Rg/c, and thus
units of frequency in c/Rg.

3.1. ṁ(r, t) Fluctuations as Sinusoids

In the initial stages of constructing our model, the small independent mass fluctuations ṁ(r, t) described in section
2.1.1, was not modelled as a power noise time series, but instead modelled as simply being sinusoidal variations. This
simplification is useful for testing and understanding the mechanism of mass propagation described in EQ. 8.

For the sinusoidal inputs for ṁ(r, t) variations the following we used EQ. 14 where A is a scaling constant.

ṁ(r, t) = A sin [2πfvisc(r)t] (14)

Using N = 3 annuli, we can show the total mass accretion rate Ṁ(r, t) over a period of 1.1× the maximum viscous
timescale in FIG. 8.
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FIG. 8. Mass accretion rate Ṁ(r, t) against time with sinusoidal inputs for ṁ(r, t). one can see how the initally long variabillity
at the outer radii (green) modulates the variation at the next annuli (yellow) and then further modulates to the innermost
annuli (blue). Variables for run: N = 3, rmin = 1, rmax = 10, tmax = 1.1, H/R = 1, α = 0.3

We may also plot the rms-flux relationship for the above sinusoidal model and we indeed find an almost perfect
linear relationship with an r2 value of 0.9997 shown in FIG. 9, thereby confirming that the propagations are correctly
propagated through the disc multiplicatively.
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FIG. 9. The rms-flux relation for the mass accretion rate at the innermost radius Ṁ(rmin) shown in FIG. 8. This relation was
calculated over 10 bins of equal size in time.

3.2. Comparison with Arevalo and Uttley

FIG. 10 shows the results produced by the disc model put forward by Arevalo and Uttley in 2005.25 One can see
that the simulation is run over a period of ∼ 105 units in time and the associated PSD displays a flat top characteristic
of the typical 1/f a low frequencies then bends to steeper slopes at around fvisc(rmin) = 3× 10−3c/Rg. The rms-flux
relation displays the characteristic linear relation as expected of system with multiplicatively coupled time-scales.

FIG. 10. Results from Arevalo and Uttley 200525 showing a realisation of a lightcurve (a), and associated PSD (b) and rms-flux
relationship (c)
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FIG. 11. Our results, attempting to replicate those in FIG. 10. Lightcurve for : N = 100, rmin = 1, rmax = 10, Q = 0.5,
tmax = 10.1, H/R = 1, α = 0.3. The red vertical line on the PSD indicates the maximum viscous frequency.

We present our version of these results in FIG. 11. There are some notable differences, the most obvious is the
shape of the PSD the reason for which is due Areavalo and Uttley applying a low pass filter to their PSD via the use of
a “filter factor”, we have not implemented this, nevertheless one can see that our PSD still displays the characteristic
flat top at lower frequencies and then a steep drop off at frequencies above the maximum viscous frequency fvisc(rmin)
which has been labelled by a red vertical line. Our PSD also seems to display a break at lower frequencies that is not
observed in the one put forward by Arevalo and Uttley.

Our light curve does seems to display a similar level of variability over the simulation time. Arevalo and Uttley
have used N = 1000 annuli in their model and have likely used a much large maximum radius than we did for our
model (10Rg), the reason for this is we experienced difficulty in creating PSDs for long time series and thus had to
keep our model parameters such that our viscous timescales did not become too large.
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3.3. Effect of Changing Radius

In this section we present a selection of light curves and PSDs for a combination of different radii (FIG. 12). The
rest of the model parameters are kept identical to those in FIG. 11.

3.3.1. Changing Inner Radius

Increasing inner radii seems to acts as to reduce the the high frequency variability present in the light curve as well
as shrink the size of the flat top area in the PSD by bringing reducing the value of the maximum viscous frequency.
Therefore we can conclude that the location of the break is directly related to the position of the inner annuli, and
postulate that the size of the flat top area on the PSD is related to the ratio of inner and outer radii.

3.3.2. Changing Outer Radius

Increasing the size of the outer radius has the effect of moving the break break on the left hand side of the flat area
on the PSD to lower frequencies. This break is located at the lowest viscous frequencies associated with the outermost
radii. The light curve responds to a larger outer radii by having a longer variability.

3.4. Effect of Changing Q

Changing Q to a larger value, corresponding to a broader input Lorentzian, acted as to reduce the sharpness of the
PSD break. This parameter may prove useful when attempting fit a given model to observed PSDs as shown earlier
in FIG. 3 for hard and soft states (FIG. 4). A possible model extension would be to have unique values of Q for each
annuli.

3.5. Effect of Changing H/R

Attempting to reducing H/R served to increase the viscous timescale exponentially as described in section 2.1 and
became increasingly computationally demanding. However our small amount of experimentation does not lead us to
believe that changing H/R significantly affects either the light curve’s general trend over N number of timescales, nor
does it seem to significantly change the shape of the PSD in our model.

3.6. Effect of Changing α

Increasing the viscosity parameter α served to increase the viscous timescale at each radius and thus decrease the
viscous frequency. However we do not notice much significant change in general shapes of the lightcurve, PSD or
rms-flux relationship.

3.7. Effect of Changing Simulation Time

In our model, the simulation time of our model was set by the parameter tmax so that the total time over which the
simulation took place was given by Time = tmax × fvisc(rmin). We have chosen to simulate most of our light curves
over around an arbitrary ∼ 10 viscous timescales as it allows for the visualisation of good amount of variability. Setting
tmax too high produces a light curve that appears completely noisey and random as any detail in the fluctuations are
not sufficiently resolved. Using a tmax that is too low (< 2) causes an incomplete propagation of the fluctuations due
to the time shifting described in section 2.1.1.
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a)

b)

c)

FIG. 12. Shows the effect of chainging the inner radius rmin, while keeping the outer radius fixed at rmax = 20Rg.
a) Corresponds to rmin = 2Rg b) to rmin = 6Rg and c) to rmin = 13Rg
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4. CONCLUSION

Using a numerical implementation of a fluctuating accretion disc, we have been able to produce synthetic light curves,
PSD and rms-flux graphs, and investigated the effect of varying model parameters on them. Visual comparisons have
been made to results produced by Arevalo and Uttley, which seem to be congruent. We have successfully reproduced
the typical 1/f shape with a break at the maximum viscous frequency seen in some system’s PSDs, as well as the
observed linear relationship between rms and mean flux.

We have also hopefully presented some useful background information regarding accretion discs that may help those
aiming to build a foundation in the theory.

4.1. Extensions

Our model in its current state is a very primitive one and has significant room for improvements and additions that
it would be impossible to mention them all. However one of the next logical steps in our model would be to attempt
to create plots of the time lags of the outer and inner regions of the disc via the use of a cross correlation function.27

Further extensions are not limited to attempting to produce a mechanism that accounts for the hard and soft states
of the disc, attempting to fit the model to actual observed light curves, or extending the complexity of the model to
include other emission processes.

Areas of investigation potentially lie within the emissivity profiles described in section 2.1.2, as well as the types of
inputs in the Timmer and Koenig method.

More generally in accretion disc theory, addressing the problem of ”turbulence” via the use of an arbitrary parameter
α has not been satisfactory in the eyes of first principle physics. In the past, there have been attempts in the past to
try and parameterise alpha in terms of some of the parameters of the disc, such as temperature, radius and density.28

However a more commonly accepted proposition is that solutions may lie in the form of magnetorotational instability
(MRI) that may be a generic source of turbulence in discs.10,6
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